1140
Comment:

2298

Deletions are marked like this.  Additions are marked like this. 
Line 3:  Line 3: 
Post code that demonstrates the use of the interact command in Sage here. It should be easy for people to just scroll through and paste examples out of here into their own sage notebooks.  This is a collection of pages demonstrating the use of the **interact** command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks. If you have suggestions on how to improve interact, add them [[interact/Suggestionshere]] or email the sagesupport mailing list. Of course, your own examples are also welcome! 
Line 5:  Line 8: 
We'll likely restructure and reorganize this once we have some nontrivial content and get a sense of how it is laid out.  Documentation links: 
Line 7:  Line 10: 
== Graphics ==  * [[http://doc.sagemath.org/html/en/reference/repl/sage/repl/ipython_kernel/interact.html interacts in the Jupyter notebook]] * [[http://doc.sagemath.org/html/en/reference/notebook/sagenb/notebook/interact.htmlinteracts in the legacy SageNB notebook]] 
Line 9:  Line 13: 
== Calculus == {{{ 
Examples: * [[interact/algebraAlgebra]] * [[interact/bioBioinformatics]] * [[interact/calculusCalculus]] * [[interact/cryptographyCryptography]] * [[interact/diffeqDifferential Equations]] * [[interact/graphicsDrawing Graphics]] * [[interact/dynsysDynamical Systems]] * [[interact/fractalFractals]] * [[interact/gamesGames and Diversions]] * [[interact/geometryGeometry]] * [[interact/graph_theoryGraph Theory]] * [[interact/linear_algebraLinear Algebra]] * [[interact/Loop Quantum GravityLoop Quantum Gravity]] * [[interact/miscMiscellaneous]] * [[interact/number_theoryNumber Theory]] * [[interact/statsStatistics/Probability]] * [[interact/topologyTopology]] * [[interact/webWeb Applications]] == Explanatory example: Taylor Series == This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above! {{{#!sagecell x = SR.var('x') x0 = 0 f = sin(x) * e^(x) p = plot(f, 1, 5, thickness=2) dot = point((x0, f(x=x0)), pointsize=80, rgbcolor=(1, 0, 0)) 
Line 12:  Line 46: 
def _(q1=(1,(3,3)), q2=(2,(3,3)), cmap=['autumn', 'bone', 'cool', 'copper', 'gray', 'hot', 'hsv', 'jet', 'pink', 'prism', 'spring', 'summer', 'winter']): x,y = var('x,y') f = q1/sqrt((x+1)^2 + y^2) + q2/sqrt((x1)^2+(y+0.5)^2) C = contour_plot(f, (2,2), (2,2), plot_points=30, contours=15, cmap=cmap) show(C, figsize=3, aspect_ratio=1) show(plot3d(f, (x,2,2), (y,2,2)), figsize=5, viewer='tachyon') 
def _(order=slider([1 .. 12])): ft = f.taylor(x, x0, order) pt = plot(ft, 1, 5, color='green', thickness=2) pretty_print(html('$f(x)\;=\;%s$' % latex(f))) pretty_print(html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$' % (x0, latex(ft), order+1))) show(dot + p + pt, ymin=.5, ymax=1) 
Line 21:  Line 53: 
attachment:mountains.png == Number Theory == {{{ html('<h1>Cuspidal Subgroups of Modular Jacobians J0(N)</h1>') @interact def _(N=selector([1..8*13], ncols=8, width=10, default=10)): A = J0(N) print A.cuspidal_subgroup() }}} attachment:cuspgroup.png 
{{attachment:taylor_series_animated.gif}} 
Sage Interactions
This is a collection of pages demonstrating the use of the **interact** command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks. If you have suggestions on how to improve interact, add them here or email the sagesupport mailing list. Of course, your own examples are also welcome!
Documentation links:
Examples:
Explanatory example: Taylor Series
This is the code and a mockup animation of the interact command. It defines a slider, seen on top, that can be dragged. Once dragged, it changes the value of the variable "order" and the whole block of code gets evaluated. This principle can be seen in various examples presented on the pages above!